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A piecewise linear method of analyzing the effects of discontinuous nonlhwarities on

control system performance is described. The limit cycle oscillator), behavior of the sys-

tem resulting from the nonlinearities is described in terms of a sequence of linear system

transient responses. The equations are derived which relate the initial and the terminal

conditions of successive transients and the boundary conditions imposed by the non-

linearities. The method leads to a convenient computation algorithm for prediction of

limit cycle characteristics resulting from discontinuous nonlinearities such as friction,

deadzones, and hysteresis.

I. Introduction

Recent occurrences where degradation of hydromechanical

components has led to excessive limit cycle oscillations of the

70-m antenna axis servos have prompted investigations of the

cause and possible methods of minimization of those oscilla-

tions. Excessive limit cycling is objectionable because it

degrades antenna pointing accuracy, and is presumed to accel-

erate the mechanical wear degradation of actuator gears, bear-

ings, and hydraulic motors. It is therefore important to devise

methods to minimize limit cycling by alteration of the con-

troller design, and to a limited extent, by installation of

improved servovalves and hydraulic motors. Also, since it is

presumed that limit cycling is aggravated by otherwise accept-

able wear of mechanical devices, a more robust controller

design with respect to limit cycling is desirable insofar as it

would necessitate less frequent component replacements due

to we_r.

This article describes the initial progress in the analytic

assessment of the limit cycles resulting from various non-

linearities in the system. The ultimate product of this effort

will be a set of quantitative relationships between limit cycle

behavior and the control system parameters. Such relation-

ships will facilitate the selection of control parameters to pro-

vide the best overall combination of linear servo and limit

cycle performance.

The major nonlinearities in the axis servos result from fric-

tion associated with the hydraulic motors and gear reducers

comprising the control actuators, as well as deadzone and
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hysteresiseffectsin the associatedhydraulicservovalves.
Foursuchactuatorsareemployedin eachaxistoapplycon-
trol torquedirectlyto antenna-mountedbull gears[1].
Becausethegearreducersareheavilypreloadedto prevent
backlash,the geartoothandbearingfrictioncontributea
significantpartofthetotalfrictioninthesystem.

Simulationstudiesof limit cyclebehaviorareof limited
usefulnessasa designtoolbecausetheyprovidelittleinsight
associatingparameteradjustmentswith performance,and
becausetheyrequirelongsimulationrunsto identifystable
limit cycleconditions.Thelargemagnitudeof thefriction,
whichisroughly25percentofthemaximumavailablecontrol
moment,makesthesimplesimulationmodelsfrequentlyused
for frictioninadequateforapplicationto the70-maxisservos
[2]. Moreprecisecomputersimulationmodelsfor friction
involveconsiderablecomplexityandalsonecessitatesmaller
integrationtimes,thusincreasingcomputationtimeandmak-
ingbroadbasedparameterstudiesimpractical.

Conventionalanalyticmethodssuchasthesecondmethod
of Liapunov 131, which require continuity of the system func-

tion and of its partial derivatives, are not directly applicable

because friction represents a discontinuity. Describing func-

tion analysis can be applied to simple cases such as the hydrau-

lic valve, where the nonlinearity can be represented by a cas-

cade function block. However, the friction associated with the

antenna axes introduces a degree of complexity to the compu-

tation of the describing functions which make that method

unattractive. Because friction effects appear to be the least

tractable by conventional methods, the new method was

developed for systems involving friction with provisions for

incorporation of other nonlinearities at a later stage in the

development.

The accuracy of this approach is limited by two factors.

First, the form of combination of effects from various non-

linearities is not considered and linear superposition is not

expected to apply. Second, an ideal continuous time-state

variable controller is assumed and consideration of friction-

induced estimator error and correction effects is deferred

until later in the study. Despite these limitations the method

should still be effective in identifying the course of design to

minimize limit cycle behavior.

II. Theoretical Background

The phenomenon of friction is discussed in most elemen-

tary textbooks on mechanics. In the case of the axis servos,

friction results in a torque in a direction opposite to the direc-

tion of motion, or in the absence of motion, a direction oppo-

site to the net applied torque. In the finite-motion case, the

friction torque is a constant amplitude known as the Coulomb

friction. In the zero-motion case, the friction torque is equal

and opposite to the applied torque until a critical level known

as the static friction is exceeded. Thus, foe any applied torque

less than the static friction, tire acceleration is zero and the

system remains at rest. Because the friction torque instanta-

neously changes direction and amplitude at zero velocity, it is

described by a discontinuous function.

In the presence of friction, a closed-loop linear system in

nrotion behaves according to its linear equatkms of motion

with a constant external torque corresponding to the Coulomb

friction torque. When the system velocity reaches zero, the

friction torque instantaneously changes direction and ampli-

tude, according to the friction law described above. In most

cases of interest here, the control torques are insufficient to

instantaneously overcome the static friction so the system

remains at rest tk)r a finite period of time. At zero velocity,

the static friction prevents any motion and effectively opens

the rate and acceleration feedback loops. The system there-

fore behaves according to a set of open-loop linear equations

which are formed from the closed-loop equations by deleting

terms inw)lving rate and acceleration. This open-loop transient

response ends at the time the actuator torque becomes suffi-

cient to overcome the static friction and motion commences.

The undisturbed system behavior can thus be described by

a succession of linear transient responses with specific initial

conditions and with an external torque disturbance corre-

sponding to the Coulomb friction. The transients alternate

between the open-loop and closed-loop responses with the

initial conditions of each transient equal to the terminal con-

ditions of the previous transient and the external torque alter-

nating according to the direction of the velocity. Depending

upon the initial conditions at the start of this sequence, the

system either converges or diverges to a stable limit cycle.

Alternatively, if a stable equilibrium exists, the system con-

verges to the equilibrium point.

III. Applications

A. Limit Cycles in an Elementary PID Controller

A few basic insights can be obtained from analysis of the

elementary proportional, integral, and derivative (PID) feed-

back controller of Fig. 1. The block diagram represents a sys-

tem consisting of a pure inertia with rate, position, and inte-

gral error feedback and a linear, frequency-independent con-

trol amplifier and torque motor actuation device. For general-

ity and convenience of analysis the torque gain and load inertia

are lumped together in the rate loop gain K 3. The single exter-

nal input U represents the external torque, and the three-
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element output vector Y corresponds to integral error, posi-
tion, and rate.

The state-space matrices for the linear closed-loop system

of Fig. 1 are

I 1°1 I:]A = _ 0 1 B =

K1 _K2 _K3 j-I

C _ O =

where

:_ = Ax+BU

and

Y=Cx+DU

with U equal to the effective Coulomb friction torque in addi-
tion to any other external disturbance.

The open-loop system matrices Ao, B0, Co, and D o are
formed from the closed-loop matrices above by substituting

zeros for the columns of A and C that correspond to rate. The

B and D matrices are unchanged from their closed-loop values.
Thus

A0= 0 0

K l -K 2 0

1 ]! Do=

0

The behavior of the elementary PID system can be inferred

from the block diagram of Fig. 1 and the corresponding equa-

tions with the torque input adjusted according to the known

characteristics of the friction. When the system is initially at

rest, any finite position error produces an increasing control

torque which eventually overcomes the friclion, and the sys-

tem begins to respond according to the closed-loop equations.

The rate increases in a direction opposite to the initial position

error until the control torque decreases to a level where the
Coulomb friction decelerates the system toward zero rate.

The closed-loop transient ends abruptly at the zero-rate point

and subsequent behavior will again be governed by the open-
loop equations.

The properties of the limit cycle oscillation are conveni-

ently described by phase-plane projections of the three-

dimensional state-space trajectories. For convenience of termi-
nology, the plane corresponding to zero rate is referred to as

the integral plane and the plane corresponding to zero integral
is the rate plane. In the open-loop condition, the zero-rate

condition defines a straight-line trajectory confined to the

integral plane. The point of transition to closed-loop behavior

is obtained from the equation describing the net torque acting
on the inertia:

-KlXl-K2x2-K3xa+Tf = 0
J (1)

where Tf assumes the algebraic sign of (K 1 x 1 +K 2 x 2 ).

In the integral plane, Eq. (1) defines two parallel lines

which bound the open-loop condition. Outside the plane,
Eq. (1) defines two parallel flat surfaces which correspond to

the zero-acceleration conditions. All closed-loop trajectories
cross these surfaces when the control torque decreases to the

friction level and deceleration begins. These crossings thus

indicate the peak-rate points and should not be confused with

a return to open-loop conditions.

The form of the closed-loop transient is recognized from

the block diagram of Fig. I as a combination of a damped

sinusoid and a decreasing exponential. The relative phase of
the sinusoid and amplitude of the exponential are linear func-
tions of the initial conditions and of the friction level. Because

the determination of conditions at the zero-rate crossings

requires solution of transcendental equations, a numerical

evaluation method of analysis was pursued in preference to a

generalized closed-form analytic method. The numerical pro-
cessing was facilitated by the use of PC Matlab, an interactive

scientific calculation program with extensive linear algebra
capabilities.

Figure 2 shows the integral plane phase portraits of a family

of typical transients similar in form to the closed-loop tran-

sients and satisfying the initial conditions of Eq. (1), for a case
where the static and Coulomb friction levels correspond to

1.5 and 1 rad/sec 2 respectively. The actual closed-loop tran-

sients differ from those shown in that they end at the points
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ofzeroratewhicharerecognizedastheregionsof zeroslope
in theintegralplane.Figure3 tracesthesequencingbetween
closed-loopandopen-looptransientsandshowsconvergence
towardastablelimitcycle.Figure4 showsthecorresponding
rate-planeprojection.Theopen-loopportionsof thetrajec-
toryarerecognizableasconstantpositionlinesin theintegral
planeof Fig.3 extendingfromtheclosed-loopterminalcon-
ditions(zerorate)to theopen-loopinitialconditionlineof
Eq.(1).Thegeneralpropertiesof thisopen-looptransientcan
be inferredfromtheeigenvaluesoftheopen-loopA o matrix,

which in this case indicate a simple integration.

A few fundamental properties of the system behavior can

be identified from Fig. 2 where the convergence of the unter-

minated transient toward the respective nodal points is evident.

From the block diagram of Fig. 1 it is seen that the two nodal

points correspond to the equilibrium condition where the
control and friction torques combine to produce zero accel-

eration, rate, and position. The points of convergence thus

satisfy the condition

IK 1x 1 I< Tcf
J

where Tcy is a positive constant corresponding to the Coulomb
friction. It follows that any point on the straight line between

the two nodal points corresponds to a stable equilibrium. Any

point outside the nodal points or off their connecting line will
result in finite acceleration and motion will continue until a

stable equilibrium is reached.

Thus, the closed-loop initial conditions are dependent on
the static friction and the nodal points are dependent on the

Coulomb friction. Therefore, the initial condition lines will

never intersect the stable equilibrium region unless the static

and Coulomb levels are equal. Further, since Fig. 2 indicates

that none of the possible trajectories cross zero rate at a

zero-position condition, it follows that a finite limit cycle will

always result unless the nodal points lie on the initial condi-
tion lines.

This leads to the conclusion that for any elementary PID

controller with equal levels of static and Coulomb friction
and in the absence of other nonlinearities, the system response

will always converge to a stable equilibrium and no limit cycle
will result. When the static friction exceeds the Coulomb fric-

tion level, the response from any initial condition off the line

segment of stable equilibrium conditions will either converge
or diverge to a stable limit cycle. A finite limit cycle condition
will exist whether or not the closed-loop system response (the

eigenvalues of A) is overdamped. Further, since the Coulomb
friction increases the distance between the nodal points, its

increase with a constant static-Coulomb friction differential

is expected to increase the time required to transit the open-

loop trajectory, thus increasing the limit cycle period.

To investigate the relationships between the control gain

and limit cycle behavior, a set of 60 different combinations

of gains was prepared and the properties of the resulting stable

limit cycles were evaluated. To ensure that all results corre-

spond to reasonable closed-loop stability, the gains were
calculated to produce a family of left-hand plane (LHP) pole
locations. The 60 combinations of pole locations included

damping ratios of 50, 70.7, and 86.6 percent of critical and

five magnitudes between 0.3535 and 1.414 sec -1 for the com-

plex pair, along with four real pole locations between -2.83
and -8.0 sec -1. The static and Coulomb friction levels were

arbitrarily set at 10 and 0 rad/sec 2 respectively for all com-

binations of gain.

The limit cycle properties of interest here are the position

amplitude, the peak rate, and limit cycle period. These prop-
erties are readily determined once the initial conditions for

a stable limit cycle have been identified. For the elementary

PID controller, the initial conditions for a stable cycle are

readily determined by Eq. (1), so all that is required is to

start with an arbitrary initial condition and observe the termi-

nal conditions of the resulting closed-loop transient. When

the initial and terminal positions are equal and opposite, a
stable limit cycle has been described. A simple recursive

routine was used to implement this process, where the initial

condition for each trial was equated to the geometric mean

magnitude of the initial and terminal positions of the pre-
vious trial. Instability associated with small values was avoided

by substituting the arithmetic mean in place of the geometric
mean when either value was less than one-tenth of the other.

This method was found to have superior convergence proper-

ties over methods using the arithmetic mean exclusively.

The position amplitude, peak rate, and period of the corre-

sponding stable limit cycles are plotted against their corre-

sponding gain parameters in Figs. 5, 6, and 7. The position
amplitude of Fig. 5 approximates a 1.445 rr/K 2 relationship.

The dispersion in the data appears to be the result of errors in

determining the precise zero crossings of the discrete time
solution of the transient response. The peak limit cycle rate

approximates 8.354/K 3. In this case the apparent dispersion

is presumed to be valid data since a correlation to the recip-
rocal of the position gain K 2 was also identified. The influence

of the position and rate gains on the limit cycle period is

readily apparent in the limit cycle period of Fig. 7. Taken

together, Figs. 5, 6, and 7 indicate that simultaneous minimi-

zation of position amplitude and peak rate along with maxi-

mum period represent mutually exclusive constraints on the

integral, position, and rate gains. However, this conflict may
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be resolved by minimizing a mean square rate which can be

approximated by the rate squared, divided by the period.

B. Application to the 70-m Axis Servos

The dynamics of the 70-m antenna axis servos are far more

complicated than those of the elementary PID controller

described above, but the same principles of analysis apply. A

simplified dynamic block diagram of the typical axis rate servo

is shown in Fig. 8 where a rigid body approximation of the
actual antenna structure is assumed. To condense the state-

space model to the minimum number of states, the lead net-

work in the tachometer feedback path is replaced with the

equivalent acceleration-state feedback in Fig. 9 and the net-

work pole at -PI is ignored. To accommodate representation

by open-loop and closed-loop state-space matrices, the posi-

tion loop controller of Fig. 8 is replaced in Fig. 9 by the
equivalent feedback gains which operate on the multivariable

output Y. This distinction between the output and the states
will become apparent when the nonlinearities are introduced.

With the conventional state-space representation of the

system,

_: = Ax+BU

Y = Cx+DU

The multivariable A B C D matrices, before incorporating
the position loop control gain K, are

A _-

B =

0 1

0 0

0 0

0 0

0 0

0

1

0

K, /q

0

1

0

-(V 2 + KR)/C h

-1%

0

0

1�Jr,

-K z, Ch

-KRt% z,

0 0 0

0 0 0

1 0 0

o

0

0

0

v/c,,

0

0 0

0 0

o

+KR/JZ,)/C h (Z 2 -P2)/Ch

-K /J z,

0

0

D =
0

0

0 0

0 0

0 0

0

where the multivariable input U and output Y correspond to

U =

-KY

external torque

excess flow

y =

integral position

position

rate

acceleration

The excess flow element in the input vector U is included to

accommodate the future addition of a nonlinear representa-
tion of the hydraulic valve.

Incorporating the controller gain K into the state equations
involves some unusual complexity since U includes Y and Y is

also dependent on U when the input matrix D is nonzero. The
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fundamental state equations for k and Y can be expressed in a

form to separate the -KY from the other elements of U. Thus

substituting -B 1 KY + BUEx t for BU and -D 1 KY + DUEx t for

DU where B 1 and D 1 denote the first columns of B and D and

UEx t is U with the first element replaced by zero,

._ = Ax-B 1KY+BUr:xt

Y = Cx-DU = Cx-D 1KY+DUt,:_ t

than two of the five state variables. In the case of the closed-

loop initial condition, the requirements of zero rate and

acceleration define the third and fourth variables, whereas in

the open-loop case the sole requirement of zero rate defines

only the third variable. This difficulty was partially overcome

by arbitrarily assigning a small value to the position variable

and small time derivatives to the fourth and fifth state vari-

ables. Thus with x 2 and x 4 defined and x 3 = O,x I and x s can

be determined from solution of the matrix equation

which leads to

y = [I+ DIK]-I(Oc + DUl.;xt)

and

._: : Ax- BIg [] + O IK]-I(C_'( + Of Ex t) + BUEx t

These expressions for Y and .{" define new A and C matrices

for the general case involving position controller gain K.

In the specific case described here, the input U does not

couple directly into Y since D l is a column of zeros. Thus

C is unaffected by introduction of the controller gain K and

the expressions for the closed-loop A 1 and B 1 simplify to

A 1 = A - B 1KC

i14214 i21

(2)

B 1 = B -B 1KD

The open-loop system matrices Ao and Bo are fi)rmed by

altering the closed-loop A 1 and B 1 to satisfy the constraint

that the rate state }3 and the acceleration output 3'4 must

remain zero. This is accomplished by assigning zeros to the

third rows of Ao and Bo, to the second column of B, and to

elements a04. 3, a05, 3, and a0s. 4 of A 0 and changing a04, 4 to

-Dh/C h. This process is the equivalent of breaking the for-

ward paths through 1/J m and the (-1 } and (-V) rate feedback

paths. In actual practice, modifying the third colunms of A

and C is unnecessary because x 3 is already constrained to

zero. For convenience in determining the breakaway condi-

tion, C and D are used unmodified in the open-loop case.

This results in a finite value of the acceleration output Y4,

which is tested for a zero crossing to determine the end of the

open-loop condition.

As in the case of the elementary PID controller discussed

earlier, the end points of the open-loop and closed-loop

transients are determined by the zero crossings of the rate and

of the control-friction torque difference. The determination of

initial conditions is more complicated, however, because the

governing physical friction law fails to uniquely define more

where Tsf represents the static friction and v 4 and v s represent

the assigned values for,_4 and k s at time t = 0+. The use of the

closed loop A 1 and B 1 in this expression ensures that the con-

dition will be satisfied after the transient begins.

Figures 10. 11, and 12 illustrate the convergence resulting

from the use of Eq. (2) for initial conditions with three differ-

ent combinations of static and Coulomb friction. All three

cases used initial conditions x 2 = 0.02 tad, v4 = -0.12 tad/see,

and v 5 = -0.01 rad/sec. The plant variables are typical of the

70-m azimuth axis, and position control gain K is the phase-

variable-form equivalent of the present values in the 70-m

servo firmware [4]. Figures 10, 11, and 12 indicate that while

the solutions always converge or diverge properly depending

on the static-Coulomb friction difference, the initial condi-

tions selected using Eq. (2) are far from those of the stable

limit cycle.

Figure 11 indicates that unlike the elementary PID con-

troller, the 70-m axis servos develops a finite lhnit cycle even

when the levels of the static and Coulomb frictions are equal.

A comparison of Figs. 10, 11, and 12 also seems to indicate a

proportionality between the integral position amplitude and

the static friction, as is the case for the elementary PID con-
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troller. The magnitude of the proportionality constant is not

obvious from the system equations.

IV. Conclusions

The piecewise linear method described here has been shown

to be highly effective in evaluating friction-induced limit cycle

behavior in the 70-m axis servos. The method is sufficiently

general such that it should be readily applicable to treatment

of hysteresis and deadzone effects in the hydraulic valve and

other nonlinearities characterized by a discontinuity between

linear properties. In the next stage of development it should be

possible to identify the basic parametric relationships between

the system parameters and limit cycle properties. A knowledge
of these relationships will enable system designers to develop

improved servo designs with less objectionable limit cycle

properties.
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Fig. 1. Block diagram of an elementary PID controller.
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